Ni-SiO₂ catalysts for the carbon dioxide reforming of methane: varying support properties by flame spray pyrolysis.
نویسندگان
چکیده
Silica particles were prepared by flame spray pyrolysis (FSP) as a support for nickel catalysts. The impact of precursor feed rate (3, 5 and 7 mL/min) during FSP on the silica characteristics and the ensuing effect on catalytic performance for the carbon dioxide, or dry, reforming of methane (DRM) was probed. Increasing the precursor feed rate: (i) progressively lowered the silica surface area from ≈340 m2/g to ≈240 m2/g; (ii) altered the silanol groups on the silica surface; and (iii) introduced residual carbon-based surface species to the sample at the highest feed rate. The variations in silica properties altered the (5 wt %) nickel deposit characteristics which in turn impacted on the DRM reaction. As the silica surface area increased, the nickel dispersion increased which improved catalyst performance. The residual carbon-based species also appeared to improve nickel dispersion, and in turn catalyst activity, although not to the same extent as the change in silica surface area. The findings illustrate both the importance of silica support characteristics on the catalytic performance of nickel for the DRM reaction and the capacity for using FSP to control these characteristics.
منابع مشابه
Highly Dispersed Nickel-Containing Mesoporous Silica with Superior Stability in Carbon Dioxide Reforming of Methane: The Effect of Anchoring
A series of nickel-containing mesoporous silica samples (Ni-SiO₂) with different nickel content (3.1%-13.2%) were synthesized by the evaporation-induced self-assembly method. Their catalytic activity was tested in carbon dioxide reforming of methane. The characterization results revealed that the catalysts, e.g., 6.7%Ni-SiO₂, with highly dispersed small nickel particles, exhibited excellent cat...
متن کاملInvestigation of the catalytic performance and coke formation of nanocrystalline Ni/SrO-Al2O3 catalyst in dry reforming of methane
In this study, nickel catalysts supported on mesoporous nanocrystalline gamma alumina promoted by various strontium contents were prepared by the impregnation method and employed in dry reforming of methane (DRM). The prepared catalysts were characterized using N2 adsorption (BET), temperature-programmed reduction and oxidation (TPR,) and oxidation (TPDTPO), X-ray diffraction (XRD), and scannin...
متن کاملEffect of K2O on the catalytic performance of Ni catalysts supported on nanocrystalline Al2O3 in CO2 reforming of methane
CO2 reforming of methane (CRM) over unpromoted and potassium promoted Ni/Al2O3 catalysts was studied. The catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 adsorption (BET), temperature programmed reduction (TPR), temperature programmed oxidation (TPO) and scanning electron microscope (SEM) techniques. The obtained results showed that addition of K2...
متن کاملKinetic comparison of Ni/Al2O3 and Ni/MgO-Al2O3 nano structure catalysts in CO2 reforming of methane
The kinetic characteristics of the Ni/Al2O3 and Ni/MgO-Al2O3 catalysts were investigated in CO2 reforming of methane (CRM). The reaction orders (α and β) and the rate constant (k) were calculated using the non-linear regression analysis, in which the sum of the squared differences of calculated and experimental CO2 reforming of m...
متن کاملA Comparison Study on Carbon Dioxide Reforming of Methane Over Ni Catalysts Supported on Mesoporous SBA-15, MCM-41, KIT-6 and γ-Al2O3
The activity of Ni supported on mesoporous SBA-15, MCM-41, KIT-6, and a sol-gel prepared Ni/γAl2O3, for catalysing methane dry reforming was investigated. The chemical and physical characteristics of the catalysts before and after catalytic testing were investigated using X-Ray diffraction, X-ray Photoemission Spectroscopy, Transmission Electron Microscopy, Scanning Electron Microscopy / Energy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2015